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Abstract

Data movement across computer memory hierarchy and acasds bf distributed systems is known to be a limiting
factor for applications processing large data sets. We hseliata Cube Operator on an Arithmetic Data Set, called
ADC, to benchmark computer capability to handle large datssTo compute the operator we implement a parallel
algorithm that computes a view from the smallest parent. dlgerithm employs RB-trees to process data fitting into
memory and a multi-way merge to process data residing inrsdany storage. The ADC stresses all levels of memory
and storage by generating some2§fviews of an Arithmetic Data Set dftuples described by a small number of
integers. Data intensity of the ADC can be controlled by délg the tuple parameters, the sizes of the views, and
the number of generated views. We present benchmarkingsresumemory performance of a number of computer
architectures and of a small distributed system. Based erb#nchmark we build a tool which reveals a computer
memory signature and allows to rank computer memory pedanae.

1 Introduction
1.1 Memory Performance and Data Intensive Applications

Memory hierarchy of modern machines is growing in many dioas: in size, in depth, and in complexity [10,
Ch. 5]. Some computers employ dedicated multilevel cacB€s Qrigin and Altix), others employ shared multilevel
caches (IBM Power4), or use a combination of caches withoveregisters (Cray X1), or unconventional architec-
tures to hide memory latency (Cray MTA and Stanford STREAMcaissor). In spite of these efforts, even the best
implementations of many important scientific codes on cdase=d machines achieve only 10-20% of peak machine
performance due to slowness in feeding data to processorgafa-intensive applications, performing a few opera-
tions per datum and accessing data in a random fashion, mgradormance is the critical factor.

Two commonly used memory performance measures, bandwidtHagency, can be applied only for extreme
cases of applications where all memory accesses are weétinzsd or each access is an L2 miss. A memory perfor-
mance measure which can be used to estimate performanctadhtimsive applications should reflect performance
of all relevant memory components (from L1 to 1/0O). Severahdhmarks are available for evaluation of memory
and 1/O systems, including STREAM and PTRANS [13], HINT [1#je recently developed NAS BTIO [30], and
TPC transaction processing benchmarks [10], Ch. 7.9. THREZM and PTRANS benchmarks measure memory
bandwidth by accessing contiguous memory locations andisgmlata to a processor (STREAM) or between pro-
cessors (PTRANS). The HINT benchmark compufé%;—i = 2In2 — 1 using a hierarchical integration method
[12]. As precision of the computation increases, the havaal integration uses a finer partition of the interval evhi
increases date set size. A drop in efficiency of the compmrtétidicates that the dataset does not fit in cache. A similar
probing of the memory caches can be accomplished by acgabsirmemory with a fixed stride [10, p. 513]. NAS
BTIO benchmark is designed to test the capability of systenssipport parallel 1/0. TPC benchmarks are designed
to compare performance of query systems rather than to bear&tmemory or 1/O performance.

We propose a data-intensive application benchmark whictergges a large volume of data and, depending on
the input data size, can be used to benchmark performanagydéeel of computer memory, from L1 to I/O and
distributed storage. By varying the size of input data, tkadhmark can spill data across a few top levels of the
computer memory hierarchy, also making it a good tool foaotihg a memory signature. This new benchm&dta
Cube(DC), takes a synthetic dataset described by a small nunilparrameters and generates multiple views of this
set. Informally, it can be classified as multidimensionatiag. Multiple processors can work in parallel to measure
combined performance of multiple I/0 systems attached taehine. Furthermore, the parameters of the input dataset
can be chosen to saturate 1/0 systems of the largest exisiofines, so that multiple hosts may be efficiently used



to reduce the benchmark turn-around time.

The DC benchmark performs a data-intensive operation knowata mining as th®ata Cube Operato(DCO).
Informally, DCO computes views of a dataset representedsas @f tuples. For a chosen set of attributes, a view is a
sorted set of the tuples with attributes from the set. To gere view, DCO perform@(log n) memory accesses per
tuple, wheren is the number of tuples in the view. A view can be generatdtbefrom the original dataset or from a
parent(a view having one more attribute than the target view). phigerty allows us to split DCO into tasks having
small intertask communications and to distribute the taskess processors or/and hosts. A natural measure of the
DCO performance i3Uples generateBer Second (TUPS). TUPS represents the rate at which DCO gesédtgties.

The inverse to it, Time Per Tuple is useful to uncover mem@yeure, see Section 5.1.

In spite the fact that memory subsystem may be described leywgpérameters, the memory performance is a
complicated function of these parameters. On real apmitsthe memory performance can not be judged just based
on the parameters, hence the application benchmarks afieglale of racetracks for the computer memory.

1.2 The Data Cube Operator

The main subject of data warehousing, On-Line Analytic Bssing (OLAP), decision support database systems,
data mining systems, and resource brokers, is a datasesegyied as a list of tuples. A tuglef a dataset having
dimension attributes and a single measure attribute casgresented as= (i1,..., 4, c), Where each dimension
attributei; assumes values in an interyalm; — 1], andc is a cost function (a measure) associated \th. . . , i4).

The goal of OLAP is to help users discover patterns and ariemial the dataset by providing short query execution
times [24].

A standard tool of OLAP is the DCO [9] which computes viewsdooup-bys) of a dataset. For a chosen subset of
k attributes, a view is a sorted set/etuples containing only the chosen attributes with accateal measures of the
duplicates. DCO computes views of interesting subsetsenfliitmensions. For example in [3, 14] there are proposed
approaches for mining multi-dimensional associationg@ad answering iceberg queries by computing an iceberg
cube containing views exceeding a certain threshold.

The input data sets and some of the materialized views ystialhot fit in core memory, thus DCO computation
requires a careful reuse of data loaded into the main menaony &ll levels of cache). Computations of the DCO
feature intensive data traffic across various levels of nigmmaking DCO especially interesting as a data-intensive
benchmark. Also, the size of the DCO output is usually sigaiftly larger than the size of the input. Many papers
are devoted to efficient computation of the DCO [15, 17, 23,i8dluding parallel DCO computation algorithms
[5, 18, 21]. To improve the efficiency of querying data cuteesiumber of publications consider calculation and
storage of data cubes as condensed cubes [29] or as othbr ¢toghpressed structures [26].

For the reference implementation, we choose a greedy #igofil5] that computes each view from a smallest
parent. We assume that all attribute values are integetisoddh real OLAP datasets and existing OLAP benchmarks
[22, 28] use mostly strings as attribute values, this is mgigaificant limitation, since strings can be enumerated by
integers (using hashing, for example). One of the advastafyesing integer attribute values is reduction in the size
of the input datasets and of the materialized views.

2 The DC Benchmark
2.1 Features and Parameters

There exist datasets to test OLAP systems, DCO algorithnasgdata mining algorithms, for example, the ABP-1
and TPC-C,H,R,W benchmark databases [10, 22, 28]. For besitting purposes, the most appropriate is a synthetic
parametrized data set which can be generated by a smallgmnodihis would make the dataset scalable, the distribu-
tion of the benchmark manageable, and verification simplgo,Aa synthetic dataset, as in many real applications, can
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be generated in a distributed fashion, saving the efforth@adverhead of splitting and distributing the datasetsxro
machines in a distributed system.

In available synthetic data sets, the tuples are randomigrgéed. These datasets do not provide any means to
control the sizes of the views. One can estimate the vievg sizeng sampling or some analytical methods [15, 26].
In [7] we introducedhe Arithmetic Data SetADS), which is generated by a random number generator sithea
advantage of a priori known sizes of the views.

ADS S is a subset of a grou@ defined by

d

Q = Pz/miz),

=1
where(Z/m;Z)* is the set of integers moduta; relatively prime withm,;. An element ofS can be represented by a
tuplex = (x1,...,xq), Wwherex; is a modulom; residue. The subsétis defined by a seed= (s1,...,s4) € Q, a
generatogy = (g1,...,94) € Q. si,9: 0, i = 1,...,d, and the total number of elements

n—1
S - U (819-1?7 ey Sdgi%
7=0

where the multiplication operations are within gra@pFor any subset df different cube dimensions= {i1, ... s} C
{1,...,d}, thel-view of z € @ is defined as a projection afon thel-face of the cube:
xr = (Tiys-- s Tiy)-

TheI-view of S is the set off-views of all elements of, or S; = {x;|x € S}. If ¢; is the smallest integer such that
gf" =1 mod (m;), for the number of distinct elements fy, we have a formuléS;| = min(n,LCM;c1(q:))%, [7].

2.2 Choice of the Measures

In real applications, the sum of measures of all tuples invibes is used to characterize a view. In the bench-
mark, we use a single checksum for testing correctness angleteness of the computations. For this purpose, it is
important that:

o the measure of a tuple can be computed independently of iples
e the measure of a view cannot be calculated unless all tupkesiew have been generated

e the checksum is a separable function of the checksums oféhes v
To meet these requirements, we limit the maximum measuue\msf an arbitrarily chosen numbi&f = 31415. Then
we define the measure of a tuple= (z1,...,z4) to be
wx)=Xxg mod M

whereX is the maximum of the attribute valuesofandy is the first seed of. Finally we define the checksum of
the viewl = {i1,...,ix} C {1,...,d} tobe

c(I) =Y (v(z)*p(x) mod M)
€Sy

wherev(z) is the sequence number of a tupledp. As a result, the checksum of a view does not exceetimes
the total number of the input tuples. Finally, the checksdithe benchmark is a sum of checksums of all generated
views.

1.CM stands for the Least Common Multiple.



3 Implementation of Data Cube Computation
3.1 Approaches to Data Cube Computation

Since the publication of [9], a number of sequential and lpErdata cube computation algorithms have been
developed. These algorithms constitute two main grougsmiging on whether they compute the views by means of
sorting or by a hash table [8]. Each group employs similaindigations: smallest-parent, cache-results, amortize-
scans, [23, 15]. A share-sort optimization is specific togbeing based algorithms. THarayCube[31] algorithm,
based orMulti-Way Array-Basednethod, is another class of DCO computation algorithms.séista chunk-offset
compression technique to deal with sparse data and memarggament and performs a pipelined tuples aggregation.
ArrayCubeis the first practical algorithm designed for multidimemsibOLAP systems. The generated data cubes
often are stored as condensed or highly compressed cuhex52B7] to improve the efficiency of querying.

The views can be computed either in a top-down or bottom-upn@a[23, 3]. Such algorithms &ipeSort
PipeHash and Overlap use the top-down approach. TRépeSortalgorithm actually determines the sequence of
views by finding a minimum weight matching in a bipartite gragf the view size decreases as a function of the
number of view attributes, these algorithms outperformyr@her algorithms.

Many DCO algorithms [9, 15, 23] use a smallest-in-size vigarént” from a set of already calculated views to
create a new view. For certain classes of aggregation fumstdependency among related views can be represented as
a search lattice [15]. The optimal sequence of views can texm@ed by solving a minimum spanning tree problem
where cost of each node is the view size.

3.2 The Top-Down Data Cube Computation

For the reference implementation, we choose the top-doamsbased data cube computation which uses the
smallest-parent heuristic. The algorithm reads ADC datéetby-tuple from a file. It inserts a tuple into a balanced
tree using dimension attributes as a key. If a tuple with #aeik found in the tree, the measure values are aggregated.
If a view fits into main memory, the algorithm performs all agggations “on-the-fly”. After a view is built, the next
view is computed from a smallest parent view. The algorithmotpeds until the computation of all views has been
completed.

We use balanced trees (hamébgd-Blackirees) to aggregate data in a sort-base algorithm becaeg@tovide a
simple way to aggregate data on-the-fly. This leads to a siimngblementation of both internal and external branches
of DCO. For data with a small number of duplicates, a regudanaill likely outperform the balanced trees. However,
if the collapsing ratio is moderate, this performance gailhmwot be significant. Other balanced trees (for example,
AVL-trees or som8-tree modifications) are suitable to aggregate data in maimony. However, experiments show
that the performance gain is not significant relative toRtfetrees. Potentially, one can use variant8efees (for
instance B+-trees orB*-trees) to aggregate data in an external case. That wouldrbegient because no merging
would be necessary, but extremely inefficient. Despite awpments in cache performance, Be-trees show bad
performance for large random datasets. If, for examplB+dree cache can only store 10-20% of data, the high
chance of reading at least one page from disk in any inseratipe results in a large 1/0 volume. To be competitive,
an external sort with multi-way merging has to significamtiytperform anyB-tree implementations.

Our sequential algorithm performs a dynamic task planningpmputes the data cube in a top-down, level-by-level
manner. The algorithm starts to compute views with the giuenber of attributes when all views of the larger number
of attributes are completed. To compute a new view, the #lgorchooses a smallest ready parent. The algorithm
uses simple data structures to dynamically maintain thecbéattice (a weighted graph).

If a view does not fit into main memory, the algorithm uses atemral sorting. In this case, the algorithm uses
balanced trees to form sorted chunks of the view. Each chonkams only distinct tuples. Finally, the view is
assembled from the chunks by means of multi-way merging.
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3.3 DC Performance Model

Most DC execution time is spent on accessing data: fetchamg flom memory/disk, sorting the data, and writing
the data to memory/disk. The main DC operation is the inmedf a tuple into thé&B-tree. Some additional operations
include balancing of the tree, bookkeeping operationglinggwriting internal buffers, and constant time operasip
such as memory allocations.

For a view containing; attributes, the size of each node ofRB-tree hasuod; + u; bytes, where,y andu; are
constants Since we are using balanced trees, the number of nodesli@mat to a leaf is betwedng n and2 log n
for anRB-tree, wheren is the number of unique tuples in the view. Hence, an inserfa tuple involves reading of
approximately

(UQdi + Ul) 1ogn

bytes. Since(i) attains a maximum arount} = %d, the typical value ofl; is d; = %d. Actual access to the tree
nodes involves a number of pointer dereferences, such kismpfor the left or right node and checking the node color.
A comparison of attributes of a tuple stored in the node withbates of the current tuple and creation of a new tree
node takesod memory accesses.

In addition, there is a number of auxiliary operations, sastreading the smallest parent and updating pointer
arrays. These operations involvgdn memory accesses. Hence, the total number of cycles requiregimpute a
view is

p((uod; + ur)nlogn + vodn) + wo,

wherey is the average number of machine cycles it takes to accessma dadw is a constant number of bookkeeping
operations incurred once per all views.

The value ofu changes as the number of input tuples grows. If the L1 caché&alal a tree of depthandn < 2/,
all tree node accesses are L1 hits ang M; + mg, whereM; is the number of cycles it takes to access a datum in
the L1 cache, andh; is time to access a tuple amortized over all node accessesa twm-level cache, if a tree of
depthi fits in the main memory, and a cache of levehn hold a tree of depth, the cost of insertion is

1
= 7(M111 + Ma(la — 11) + Mo(l — I2)),

where M, is the number of cycles to access a datum in main memorypéandnd M, are the number of cycles to
access a datum in L1 and L2, respectively. Hence, as the muhbgut tuples grows, the tree spills out of L1, and
then out of L2, the cost of memory accesgradually increases.

If all tuples in all views are unique and the total number ofgrated tuples i8%n, it takes2?((uod; +u1 )n log n+
vodn) +wq cycles for accessing memory. After simplification and tgkimo account that a typical value @fis d/2,
we conclude that the time per tuple is

T = p((vid + uy)logn + vod) + %, (1)

wherev; = ug/2. TUPS of the algorithm equals—!.

This formula for time per tuple has a simple interpretatibar smalln, the last term dominates the others, hence
the time decreases as /n. For largen the first term dominates the others, hence time per tupleoggstional to
log n, to the costu of access to the current level of memory, and to the numbettidbatesd. In practice, not all
views have sizes, andu; dominates; d. As a result, equation (1) should be considered only an apadion.

2specifically, if the machine has 64-bit pointers and theetagtributes are 4 bytes long, the node sizé6is- 4 * d;.



4 Distributed Data Cube Computation
4.1 Parallel Data Cube Computation

There are a number of ways to perform DCO in parallel [4, 5219, The child-parent dependences among views
usually are represented by a weighted lattice of the views. Weights of the nodes of the lattice (the view sizes) and
of its edges (costs of calculating dependent views) arellysestimated. A common final step is a partitioning of a
weighted spanning tree of the lattice intdalanced tasks, whegds the number of processors.

A method described in [5] creates a relatively small numbbeoarse-grained independent tasks. First, it creates a
spanning tred’ of the view lattice with the view weights representing thetaaf creating it from a matched parentin
T'. The partitioning off” into subtrees is an NP-complete problem [5]. So they use adtielapproach, which creates
the p balanced subproblems and minimizes the number of subtes@ggnad to a processor. First, the min-max tree
k-partitioning algorithm [2] is used to partitiofi into s - p subtrees, where > 1 is an integer calledversampling
ratio. Then, the partitioning uses a packing heuristic to assigabtrees to the processors. The performance results
[5] show that a partitioning witk equal 2 or 3 provides good load balancing across the processo

In our parallel implementation of DCO computation we usengpdér algorithm. We use a priori knowledge of the
view sizes to partition the data cube such that output das (iiles with generated views) are well balanced across the
processors. We distribute the output data across all view élenly because the data cube computation is I/O-bound.
Since the size of the output data cube is usually signifigdnifger than the size of input data, this approach yields
a relatively good load balance. We patrtition the data cutednarse-grained independent tasks with little intek-tas
communication, so that the tasks can be executed on sharadmeachines, clusters of shared memory machines,
and in a distributed environment.

Assuming that the number of the procesgoisssubstantially smaller than the number of views, we agfigniews
to the processors in three steps. First, we sort all viewsdayehsing size. Then, we assign the views to processors
by zig-zag folding j' "-view is assigned to process@r1)¢j + e(p — 1) mod p, wheree = (j/p) mod 2. Finally,
we restore child-parent relationships in the lists of vi@ssigned to each processor by sorting the lists by the number
of dimension attributes. Now each processor computes afvaaw the smallest parent. This approach gives a load
balance exceeding 94% in our experiments.

4.2 Parallelization for Multiple Hosts

Our experiments with the DC benchmark (see Figure 5) shoty dimsa parallel machine, we can use only a few
processors efficiently. The reason is that the benchmaukeagat the machine 1/0 devices. On the other hand, since
there is little communication between DC tasks, the DC &nmind time can be reduced if some tasks are executed
on other hosts.

When forming tasks, we have to take into account thaitthemachine has a performancefTUPS. To achieve
a good load balance, we have to assign toitttemachine, a load df x 7; /T, whereV is the total load and

T= iﬂ'.
i=1

To do that we use a modification of the zig-zag folding of Sstt.1. We sort all views by decreasing the sizes. Then,
we assign the views to the machines by scanning the machieesadely in directions of increasing and decreasing
of ¢, skipping the machines whose load exce®ds;/T. We then partition the tasks assigned to each machine, as
described in Section 4.1.
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5 DC Benchmark Results

We tested the DC Benchmark on the machines shown in Tablehlneitmal production load during our experi-

ments.

Table 1. The machines used in our experiments.

Machine Name| NP Clock Rate| Peak Perf.| Memory | Maker | Architecture Batch
(MHz) (GFLOPS)| (GB) System
SF880 8 900 14.4 16 SUN | UltraSparc 3 -
O3K1 1024 | 600 1200 256 SGI Origin3800 PBS
0O3K2 512 | 400 400 262 SGI Origin3000 PBS
0O3K3 256 | 400 200 98 SGI Origin3000 PBS
u60/1 2 450 1.8 1 SUN | ULTRA60 -
u60/2 2 450 1.8 1 SUN | ULTRA60 -
02K 32 250 16 8 SGI Origin2000 -
G4 1 1250 2.5 1 Apple | G4 -
XEON 2 3060 - 2 Intel Hyperthreaded -
ALTIX 64 1500 384 128 Intel Itanium?2 -

5.1 Single Processor Memory Signature

Experimental results of running a single processor versitine DC benchmark with 11, 12, and 14 dimensions are
shown in Figures 1 and 2. Figure 1 clearly indicates presehaa initial segment and two straight line segments in
each plot. The initial segment indicates domination of &st term of Equation 1. Each straight line segment indicates
thelog n term of Equation 1 with constant memory access gosthe end points of the segments reflect a change in
the memory access costwhen theRB-trees, used for sorting of the views, grow beyond the L1 ahddches. As a
result, the minimum in the graphs indicates the point whenLth cache is filled up by the tree, hence the size of the
L1 cache can be estimated from the minimum and the tree neddisi d + 36, see Section 3.3).

Plots for dimensions 12 and 14 for three architectures avesishin Figure 2. These plots demonstrate that the
structure (initial segment - two straight line segmentdiibdor other dimensions/architectures. This gives us & bas
to call Time Per Tuple (TPT) of DC.U a memory signature.

5.2 Scalability of Memory Performance

The graphs of Figures 3 and 4 show that in-core computatibB<oscale very well. The actual load imbalance
was less than 6% for up to 32 processors. Comparison of thegigph on Figure 3 and graphs on Figure 4 shows
that the overhead of memory initialization on an Origin3&08ignificantly larger than that on a SUNFire 880, while
for larger sizes of input data, memory performance of theavahitectures is very close.

5.3 Scalability of I/O Performance

For large datasets, tHeB-trees do not fit in core memory, and Figure 5 shows that thee@se in the number of
processors does not improve TUPS (TUples Per Second). ittaited that the I/O system on the machine has been

3The memory performance gap between the Origin 2000 and S8BD is about 2.5 and growing with the size of the input st Rigure 1.
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Figure 1. Time per tuple of DC with 11 dimensions on the SUNFir e 880 and Origin 2000. Each
curve consists of an initial segment, and two straight line s egments. These segments are
(64,512), (512,64K), and (64K,2M) for SUNFire 880 and (64,1 K), (1K,32K), and (32K,2M) for Origin
2000, respectively.

fully utilized. To avoid the I/O bottleneck, we distributdte DC across hosts using the algorithm in Section 4.2. Such
distribution incurs a small overhead, since, as soon asenpaiew of a task is generated, the task does not have to
communicate with others. The results shown in Table 2 detratesthat TUPS increases when additional hosts are
used.

5.4 Benchmark Classes

In practice, to use a significant number of DC instances asehmeark would be confusing for the users. To get the
memory signature for any particular machine, the user hasate runs of DC for different sizes of the input datasets.
The verification values for a significant number of DC ins&swwould constitute a large array of data to be distributed
with the benchmark. To resolve these issues, we specify ademesentative points in the ADC parameter space. This
follows the NPB tradition to specify classes (S, W, A, B, Cddm) reflecting the computational effort required to
perform the benchmark. In DC we define classes so that thégxélcise all levels of memory hierarchy of current
systems, from L1 to the I/O system. This restriction will pogévent a user from obtaining memory signatures using
DC, but it will focus their experiments in the representawints in the ADC parameter space. For choosing classes,
we use the flexibility provided by our choice of the datasetagator.

For the benchmark we choose to be prime numbers ang to be generators ¢fZ/m;Z)*, hence having period
q; = fi = m; — 1. Also, we choosen; such thatn; — 1 has many small prime factors so that LGM(¢;) has a good
chance of been small. This approach gives us full contral theesizes of the dataset and its views. Our actual choice
of them; is shown in Table 3.
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Three Architectures

Data Cube (DC)
10

@®—@d=12,U60
G—d=14, U0
B—Md=12, SF880
[F—+F1d=14, SF880
<>—<>d=12, Origin 3800
<>—<>d=14, Origin 3800

Time per tuple (us)

Number input tuples

Figure 2. The Time per Tuple curves of DC 12 and 14 dimensionso  n the Ultra Sparc 60, SUNFire
880, and Origin 3800, respectively.

Table 2. Various load distributions among hosts. The “np” in dicates the number of proces-
sors used on the machine, the “load” is a fraction of the load p er machine processor, hence
“np” -“load” equals the fraction of work assigned to the machine.

| Machine | Experiment Number |
| | + [ 2 [ 3 | 4 [ 5 [ 6 |
np|load| np| load | np| load | np| load | np| load | np | load
SF880 8 | 1/8 | - - - - 4 1/8 | 4 1/8 | 4 1/8
O3K1 - - 8 1/8 - - 4 1/8 | 8 | 1/32 | - -
03K2 - - - - 8 1/8 - - 8 | 1/32 | 8 | 1/32
u60/1 - - - - - - - - - - 2 | 1/16
u60/2 - - - - - - - - - - 2 | 1/16
time (s) 242.2 179.1 179.3 106.2 93.1 93.1
TUPS 84810% | 1145.710° | 1145.510% | 1934.410% | 2206.510% | 2206.510°

We choose four groups of prime numbéBs5, 7}, {11,13,17,19}, {23, 29, 31,37}, and{41, 43,47, 53,
59}. For each group we choose the five smallest primgsuch that prime factors of; — 1 are 2 and numbers from
this groug, Table 3. This set of parameters gives us a dataset-@f - 52-72-11-13-17-192.23-29-312.37-41-43-
47-53- 59 different tuples and, for example, we can chonse 2-11-23-41-3-13-29-43-5-17 = 85759918530. At

4Since we use odd primesy; — 1 always has 2 as a factor.
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SUN Ultra 60
Data Cube (DC)

SUNFire 880 (8 procs)

Data Cube (DC)

Time per tuple (us)
Time per tuple (us)

10 10
Number input tupls Number input tuples

Figure 3. Scalability of Time per Tuple of DC on the Ultra Spar ¢ 60, left pane, and on the SUNFire
880, right pane.

the same time, the sizes of five-dimensional views (relativeach of the groups) are small relative to the total number
of the elements in the dataset. We further restrict the spadmeters to make four classes of the benchmark: S, W,
A, and B and reduce the sizes of the views having many ate#hutor doing this, we designate subcubes generated
by the first 5, 10, 15, and 20 dimensions as classes S, W, A, aaddgctively, Table 3.

We also leave out parameters for thger defined class U. In this class, a user can specify anytsaftibe attributes
and any number of tuples. For the class U, we do not providekstuens or verification values. The total number of
tuples in each class, the sizes of input and estimated ofikpsitare shown in Table 4. The final results of the DC
benchmark on our experimental set of machines are showrbie Ba

6 Related Work

The importance of memory performance in the overall assessof system performance was recently acknowl-
edged by the Innovative Computing Laboratory at The Unityecs Tennessee at Knoxville by adding three memory
benchmarksSTREAMPTRANSandb_eff to the LINPACK benchmark and creation of the HPC Challengedie
mark suite [13]. TheésTREAMbenchmark measures memory bandwidth by streaming veryventprs through
the processor’s registers and computing linear combingtid the vectors. The parallel matrix transp&ERANS
benchmark exercises communication capacity of the compuéenory by transposing a large dense matrix. Dur-
ing the transpose, pairs of processors communicate with eer simultaneously. Theeff (effective bandwidth)
benchmark measures the effective bandwidth by simultasigeanding (MPI) messages using several communication
patterns. The patterns are based on rings and on randoiibwistins of the communicating processes.

The HINT benchmark [12] was used for probing sizes of the primand secondary caches. Recently, it was
realized that similar probing of the memory caches can beraptished by traversing the memory with a fixed stride
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Figure 4. Scalability of Time per Tuple of DC.U on the Origin 3~ 800.

[10,, p. 513]. Such a walk causes numerous cache and TLB srasgkmay result in low memory performance. This
method has been used for fighting email spam by asking thérsendmputer to pay some computational cost per
email message by solving a memory bound puzzle.

The benchmarking of data mining systems is a well-estatdisirea of High Performance Computing [22, 28].
These benchmarks are designed to compare performanceryfsystems rather than to benchmark memory or 1/0
performance.

An adaptive probegmat was proposed in [11] to identify single processor memoryi&oecks. This probe uses
four parameters of scientific workloads to identify botdehks: working-set size, computational intensity, indii@t
and irregularity. Theqmat parameters controlling these properties can be set indepdy and the probe execution
time can be used to grade processor memory performance.

7  Summary

The DC benchmark represents an important set of compusatisad in OLAP and data mining. It executes
O(logn) memory accesses per output tuple and is memory or /O boumel Afithmetic Data Sets used in DC are
described by a small number of parameters and have a priowikisizes of the views. Parallelization of the DC
incurs a small overhead and can be well-balanced in load ntkeduce the number of generated TUples Per Second
(TUPS) as a DC performance metric. The reciprocal of TUP8eTPer Tuple gives a signature of the computer
memory performance. We use characteristic points in theasiges to choose parameters of various classes of DC.
We provide a reference implementation of the DC benchmadkue® it to benchmark TUPS of several computer
architectures. We demonstrated that DC can saturate a neexihiO system and in this case, its performance can
be improved by using additional hosts. A serial version ofi®@vailable on the NAS Parallel Benchmarks website
(www.nas.nasa.gov/Software/NPB) as part of the NPB3. kg
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Figure 5. Performance of DC.U with 10 dimensions on the SUNFi  re 880 (left pane) and on
the Origin3800 (right pane). There is no communication betw een the processes and the load
balance exceeded 94%. In spite of an increase in the number of processors from 4 to 8 (for
SUNFire 880) and from 8 to 32 (Origin 3800), the DC benchmark p  erformance degrades due to
a saturation of the 1/0O systems.
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Table 3. Dimensions of the Arithmetic Data Cube and generators for Chsses S, W, A, and B. Here “Least
Gen.” «; is the smallest generator ofZ/m;Z)*, and the “Exponent for the class” ise; such thatg; = ~;*
for given class.

Prime Factorization of| Least Exponent for the class Seed
m—1 Gen.| U| S w A B
1. 421 22.3.5-7 2111 |11 22 22 22.7 211
2. 601 23.3.52 7113 13 23.5 23.5 23.5 301
3.631 2.32.5.7 3|17 | 17 2.3 2-3 2-3-7 316
4. 701 22.52.7 21191 19 22.5 22.5 22.5.7 351
5. 883 2.32.7% 2123|123(2-3-7 2-3-7 2.3.72 442
6. 419 2-11-19 2|23 23 219 2-19 210
7.443 2-13-17 21|29 29 2-13 2-13 222
8. 647 2-17-19 5|31 31 2-19 2-19 324
9.21737 ] 23-11-13-19 31| 37 221 23.13-19 | 23-13-19 | 10869
10. 31769| 23 - 11192 7|41 22.19 23.192 23.192 | 15885
11. 1427 | 2-23-31 2|41 2-23 2-31 714
12.18353| 2%-31-37 3|43 21 24.31 | 9177
13.22817| 2°-23-31 3| 47 2°.23 2°.31 | 11409
14.34337| 2°-29-37 3|53 2° 2°.29 [ 17169
15. 98717| 22.23-29-37 2|59 22.23 22.29 | 49359
16. 3527 | 2-41-43 5| 3 2-43 | 1764
17.8693 | 22-41-53 3| 5 22 | 4347
18. 9677 | 22-41-59 21 7 22 | 4839
19. 11093| 22 -47-59 2|11 22.47 | 5547
20. 18233 23-43-53 3113 23.43 | 9117

Table 4. The main sizes of the ADC. The notation a:b:c in the Views Genmated row indicates starting
view:ending view:view number increment.

| [ U] S| W | A B |
Dimensions - 5 10 15 20
Generator period - 88200 9699690 653119005 306037160385
Number of tuples - 103 10° 10° 107
ADC size - 28 KB 4.8 MB 68 MB 880 MB
Views generated all all all 0:21° —1:26 0:220 — 1:214
Output size - 547 KB 2.594 GB 17.84 GB 30.84 GB
Number of generated tuples - 29232 89297411 454765673 595267023
Verification checksum - | 464620213 1401796434318 7141688178042 9348365700453




Table 5. Single processor DC performance. Classes S, W, and A

B was executed out-of-core.

were executed in-core, class

| | CLASS

S W A B
Machine TUPS | sec TUPS | sec TUPS | sec TUPS | sec
SF880 1232897| 0.02 | 624518| 142.99| 218774| 2078.70| 90575| 6572.09
O3K1 175161| 0.17 | 489962| 182.25| 234481 | 1939.46| 114571| 5196.62
0O3K2 203182| 0.14| 345283| 258.62| 178296| 2550.62 - -
u60/1 549174| 0.05| 263525| 338.86| 155632| 2922.06 - -
O2K 176118| 0.17 197893 451.24| 105416| 4314.01 - -
G4 2019202| 0.01| 474797| 188.07 - - - -
XEON 2617712| 0.01| 766794| 116.46| 478907 | 949.59 - -
ALTIX 1849775| 0.02 | 1294115| 69.00 | 513630| 885.40 - -
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